The assumption that voters' preferences share some common structure is a standard way to circumvent NP-hardness results in social choice problems. While the Kemeny ranking problem is NP-hard in the general case, it is known to become easy if the preferences are 1-dimensional Euclidean. In this note, we prove that the Kemeny ranking problem is NP-hard for d-dimensional Euclidean preferences with d>=2. We note that this result also holds for the Slater ranking problem.
翻译:选民偏好具有某种共同结构的假设是避免NP硬性的标准方法,从而导致社会选择问题。 虽然在一般情况下Kemey排名问题很难解决,但众所周知,如果偏好是一维Euclidean,那么就很容易解决。 在本说明中,我们证明,Kemey排名问题对于d-二维Euclidean偏爱来说是难以解决的。 我们注意到,这一结果对Slater排名问题也有影响。