Face clustering plays an essential role in exploiting massive unlabeled face data. Recently, graph-based face clustering methods are getting popular for their satisfying performances. However, they usually suffer from excessive memory consumption especially on large-scale graphs, and rely on empirical thresholds to determine the connectivities between samples in inference, which restricts their applications in various real-world scenes. To address such problems, in this paper, we explore face clustering from the pairwise angle. Specifically, we formulate the face clustering task as a pairwise relationship classification task, avoiding the memory-consuming learning on large-scale graphs. The classifier can directly determine the relationship between samples and is enhanced by taking advantage of the contextual information. Moreover, to further facilitate the efficiency of our method, we propose a rank-weighted density to guide the selection of pairs sent to the classifier. Experimental results demonstrate that our method achieves state-of-the-art performances on several public clustering benchmarks at the fastest speed and shows a great advantage in comparison with graph-based clustering methods on memory consumption.
翻译:脸组群在利用大规模未贴标签的面部数据方面发挥着不可或缺的作用。 最近, 图形化的脸组群方法因其令人满意的性能而越来越受欢迎。 但是, 它们通常会受到过度的内存消耗, 特别是在大型图表上, 并依靠经验阈值来确定样本在推断中的关联性, 从而限制其在各种现实世界场景中的应用。 为了解决这些问题, 我们在本文件中从对称角度探索面组群。 具体地说, 我们把脸组群任务设计成一种对称关系分类任务, 避免在大型图表上进行耗时的记忆学习。 分类器可以直接确定样本之间的关系, 并且通过利用背景信息来增强它们之间的关系。 此外, 为了进一步便利我们的方法的效率, 我们建议了一种按等级加权的密度来指导向分类器发送的配对的选择。 实验结果显示, 我们的方法以最快的速度在几个公共群集基准上取得了最先进的表现, 并且显示与基于图表的记忆消耗的组合方法相比, 有很大的优势。