Machine Learning (ML) algorithms are susceptible to adversarial attacks and deception both during training and deployment. Automatic reverse engineering of the toolchains behind these adversarial machine learning attacks will aid in recovering the tools and processes used in these attacks. In this paper, we present two techniques that support automated identification and attribution of adversarial ML attack toolchains using Co-occurrence Pixel statistics and Laplacian Residuals. Our experiments show that the proposed techniques can identify parameters used to generate adversarial samples. To the best of our knowledge, this is the first approach to attribute gradient based adversarial attacks and estimate their parameters. Source code and data is available at: https://github.com/michael-goebel/ei_red


翻译:在培训和部署期间,机器学习(ML)算法都容易受到对抗性攻击和欺骗;这些对抗性机器学习(ML)算法背后的工具链的自动反向工程将有助于恢复这些攻击中使用的工具和程序;在本文中,我们介绍了两种技术,支持利用共同碰撞像素统计数据和Laplacian残余物自动识别和确定对抗性ML攻击工具链的归属。我们的实验表明,拟议的技术可以确定用来生成对抗性样品的参数。据我们所知,这是确定基于梯度的对抗性攻击和估计其参数的第一个方法。资料来源代码和数据见:https://github.com/michael-goebel/ei_red。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
专知会员服务
33+阅读 · 2020年12月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
5+阅读 · 2020年6月16日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员