Throughout cosmological simulations, the properties of the matter density field in the initial conditions have a decisive impact on the features of the structures formed today. In this paper we use a random-forest classification algorithm to infer whether or not dark matter particles, traced back to the initial conditions, would end up in dark matter halos whose masses are above some threshold. This problem might be posed as a binary classification task, where the initial conditions of the matter density field are mapped into classification labels provided by a halo finder program. Our results show that random forests are effective tools to predict the output of cosmological simulations without running the full process. These techniques might be used in the future to decrease the computational time and to explore more efficiently the effect of different dark matter/dark energy candidates on the formation of cosmological structures.
翻译:在整个宇宙模拟过程中,物质密度场在初始条件下的特性对今天形成的结构特征具有决定性影响。 在本文中,我们使用随机森林分类算法来推断暗物质粒子是否在初始条件下最终会出现在暗物质光圈中,其质量超过某些临界值。 这个问题可能是一个二元分类任务, 物质密度场的初始条件被映射成光圈查找程序提供的分类标签。 我们的结果表明,随机森林是预测宇宙模拟产出的有效工具, 而不运行整个过程。 这些技术今后可能被用于减少计算时间, 并更有效地探索不同暗物质/暗能候选者对宇宙结构形成的影响。