We give practical, efficient algorithms that automatically determine the distributed round complexity of a given locally checkable graph problem, in two settings. We present one algorithm for unrooted regular trees and another algorithm for rooted regular trees. The algorithms take the description of a locally checkable labeling problem as input, and the running time is polynomial in the size of the problem description. The algorithms decide if the problem is solvable in $O(\log n)$ rounds. If not, it is known that the complexity has to be $\Theta(n^{1/k})$ for some $k = 1, 2, \dotsc$, and in this case the algorithms also output the right value of the exponent $k$. In rooted trees in the $O(\log n)$ case we can then further determine the exact complexity class by using algorithms from prior work; for unrooted trees the more fine-grained classification in the $O(\log n)$ region remains an open question.
翻译:我们给出实际有效的算法, 在两个设置中自动确定给定的本地可检查的图表问题的分布轮复杂度。 我们为不扎根的普通树提供一个算法, 并为有根的普通树提供另一种算法。 算法将本地可检查的标签问题描述为输入, 运行时间是问题描述大小的多数值。 算法决定问题是否在$O( log n) 圆圈中可以溶解。 如果不是, 已知复杂度必须是$\ Theta( n ⁇ 1/ k}) $ = 1, 2,\ dotsc $, 而在此情况下, 算法也输出出前额 $( log n) 的正确值。 在 $O (\ log n) 案例中的根树中, 我们可以通过使用先前工作的算法来进一步确定确切的复杂等级。 对于未扎根的树, $O (\ log n) 区域的精细的分类仍然是个未决问题 。