Machine learning (ML) methods are used in most technical areas such as image recognition, product recommendation, financial analysis, medical diagnosis, and predictive maintenance. An important aspect of implementing ML methods involves controlling the learning process for the ML method so as to maximize the performance of the method under consideration. Hyperparameter tuning is the process of selecting a suitable set of ML method parameters that control its learning process. In this work, we demonstrate the use of discrete simulation optimization methods such as ranking and selection (R&S) and random search for identifying a hyperparameter set that maximizes the performance of a ML method. Specifically, we use the KN R&S method and the stochastic ruler random search method and one of its variations for this purpose. We also construct the theoretical basis for applying the KN method, which determines the optimal solution with a statistical guarantee via solution space enumeration. In comparison, the stochastic ruler method asymptotically converges to global optima and incurs smaller computational overheads. We demonstrate the application of these methods to a wide variety of machine learning models, including deep neural network models used for time series prediction and image classification. We benchmark our application of these methods with state-of-the-art hyperparameter optimization libraries such as $hyperopt$ and $mango$. The KN method consistently outperforms $hyperopt$'s random search (RS) and Tree of Parzen Estimators (TPE) methods. The stochastic ruler method outperforms the $hyperopt$ RS method and offers statistically comparable performance with respect to $hyperopt$'s TPE method and the $mango$ algorithm.
翻译:在大多数技术领域,例如图像识别、产品建议、财务分析、医疗诊断和预测维护,使用机器学习方法(ML)方法。执行ML方法的一个重要方面是控制ML方法的学习过程,以便最大限度地提高所考虑方法的性能。超参数调是选择一套合适的ML方法参数的过程,以控制其学习过程。在这项工作中,我们展示了使用离散模拟优化方法,如分级和选择(R&S)和随机搜索,以确定能最大限度地提高ML方法的性能的超参数集。具体地说,我们使用KNR &S方法和Stochacry标尺随机搜索方法及其其中的变异方法。我们还建立了应用KN方法的理论基础,该方法通过溶解空间查确定统计保证的最佳解决办法。相比之下,Stochetciscrial 规则方法与全球调价(RPERS)相近的计算方法。我们用这些方法应用到各种各样的机器学习模型,包括深度搜索R&Stherral RER 随机搜索 随机搜索 随机搜索方法,并用Serma roal 方法来进行持续的Sy-roupal-roupal 方法,这些方法,这些用来进行Syal-ral-ral-ral-ral-ral-ral-ral-rma-ral-ral-rmasy-ral-rma-sal-sal-roal-sal-sal-sal-sal-sal-sal-roisal-roisal ligal ligal livial livial livial ligal 用于这些方法,这些方法,这些方法,这些方法,这些方法,用来用来用来用来进行时间和Sal-sal-sal-sial-sial-sial-sal-sal-si-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sial-sial-sial-sial-sial-sial-sal-sal-sial-sial-sal-sal-sal-sal-sal-sal-sal-sal-s