Mental health disorders may cause severe consequences on all the countries' economies and health. For example, the impacts of the COVID-19 pandemic, such as isolation and travel ban, can make us feel depressed. Identifying early signs of mental health disorders is vital. For example, depression may increase an individual's risk of suicide. The state-of-the-art research in identifying mental disorder patterns from textual data, uses hand-labelled training sets, especially when a domain expert's knowledge is required to analyse various symptoms. This task could be time-consuming and expensive. To address this challenge, in this paper, we study and analyse the various clinical and non-clinical approaches to identifying mental health disorders. We leverage the domain knowledge and expertise in cognitive science to build a domain-specific Knowledge Base (KB) for the mental health disorder concepts and patterns. We present a weaker form of supervision by facilitating the generating of training data from a domain-specific Knowledge Base (KB). We adopt a typical scenario for analysing social media to identify major depressive disorder symptoms from the textual content generated by social users. We use this scenario to evaluate how our knowledge-based approach significantly improves the quality of results.
翻译:例如,COVID-19大流行的影响,如隔离和旅行禁令,会使我们感到沮丧。识别心理健康失调的早期迹象至关重要。例如,抑郁症可能增加个人自杀的风险。在从文字数据中查明精神失常模式方面进行最先进的研究,使用人工标签的培训,特别是当需要一名域专家的知识来分析各种症状时。这项任务可能耗时费钱。为了应对这一挑战,我们在本文件中研究和分析各种临床和非临床方法,以确定心理健康障碍。我们利用认知科学领域的领域知识和专长,为心理健康紊乱概念和模式建立一个特定领域的知识库(KB)。我们通过便利从特定领域知识库(KB)生成培训数据,呈现一种较弱的监督形式。我们采用典型的情景分析社会媒体,从社会用户生成的文字内容中找出主要的抑制性障碍症状。我们利用这一情景来评估我们的知识基础方法如何显著改善心理健康障碍的质量。