We show how two recently developed quantum information theoretic tools can be applied to obtain lower bounds on quantum information complexity. We also develop new tools with potential for broader applicability, and use them to establish a lower bound on the quantum information complexity for the Augmented Index function on an easy distribution. This approach allows us to handle superpositions rather than distributions over inputs, the main technical challenge faced previously. By providing a quantum generalization of the argument of Jain and Nayak [IEEE TIT'14], we leverage this to obtain a lower bound on the space complexity of multi-pass, unidirectional quantum streaming algorithms for the DYCK(2) language.
翻译:我们展示了两种最近开发的量子信息理论工具是如何应用来获得量子信息复杂性的较低限制的。 我们还开发了具有更广泛适用性的新工具,并使用这些工具来建立对量子信息复杂性的较低约束,以便方便地分布增强指数函数的量子信息复杂性。 这种方法让我们能够处理之前所面临的主要技术挑战,即投入的叠加,而不是对投入的分布。 通过对Jain和Nayak的参数进行量子概括化,我们利用这个工具获得DYCK(2)语言多轴、单向量子流算法的空间复杂性的较低约束。