In the quest to realize a comprehensive EEG signal processing framework, in this paper, we demonstrate a toolbox and graphic user interface, EEGsig, for the full process of EEG signals. Our goal is to provide a comprehensive suite, free and open-source framework for EEG signal processing where the users especially physicians who do not have programming experience can focus on their practical requirements to speed up the medical projects. Developed on MATLAB software, we have aggregated all the three EEG signal processing steps, including preprocessing, feature extraction, and classification into EEGsig. In addition to a varied list of useful features, in EEGsig, we have implemented three popular classification algorithms (K-NN, SVM, and ANN) to assess the performance of the features. Our experimental results demonstrate that our novel framework for EEG signal processing attained excellent classification results and feature extraction robustness under different machine learning classifier algorithms. Besides, in EEGsig, for selecting the best feature extracted, all EEG signal channels can be visible simultaneously; thus, the effect of each task on the signal can be visible. We believe that our user-centered MATLAB package is an encouraging platform for novice users as well as offering the highest level of control to expert users
翻译:为实现全面的 EEG 信号处理框架,我们在本文件中展示了一个工具箱和图形用户界面(EEGsig),这是EEEG信号的完整过程。我们的目标是为EEEG信号处理提供一个全面的套套、免费和开放源码框架,用户,特别是没有编程经验的医生,可以侧重于其加快医疗项目的实际要求。我们在MATLAB软件上开发了所有三个EEEEG信号处理步骤,包括预处理、特征提取和对EEEGsig的分类。除了在EEEGsig中列出各种有用的特征之外,我们还实施了三种流行的分类算法(K-NN、SVM和ANN)来评估这些特征的性能。我们的实验结果表明,我们的EEG信号处理新框架在不同的机器学习分类算法下取得了出色的分类结果和特征提取稳健性。此外,在EEGsig中,所有 EEG的信号渠道都可以同时看到;因此,除了各种任务对信号的影响之外,在EGsig(K-cental ATLAB) 用户的最高级控制平台上,我们认为我们的用户并不鼓励。