Modern scientific advancements often contribute to the introduction and refinement of never-before-seen technologies. This can be quite the task for humans to maintain and monitor and as a result, our society has become reliant on machine learning to assist in this task. With new technology comes new methods and thus new ways to circumvent existing cyber security measures. This study examines the effectiveness of three distinct Internet of Things cyber security algorithms currently used in industry today for malware and intrusion detection: Random Forest (RF), Support-Vector Machine (SVM), and K-Nearest Neighbor (KNN). Each algorithm was trained and tested on the Aposemat IoT-23 dataset which was published in January 2020 with the earliest of captures from 2018 and latest from 2019. The RF, SVM, and KNN reached peak accuracies of 92.96%, 86.23%, and 91.48%, respectively, in intrusion detection and 92.27%, 83.52%, and 89.80% in malware detection. It was found all three algorithms are capable of being effectively utilized for the current landscape of IoT cyber security in 2021.


翻译:现代科学进步往往有助于引入和完善从未见过的技术。 这也许是人类维持和监测的任务,因此,我们社会依靠机器学习来协助完成这项任务。随着新技术带来新的方法,从而出现了规避现有网络安全措施的新方法。本研究审视了目前业界用于恶意软件和入侵探测的三种不同的“物”网络安全算法互联网的有效性:随机森林(Rand Forest)、支持-视频机器(SVM)和K-Nearest Nieghbor(KNN),每个算法都经过了Aposmat IoT-23数据集的培训和测试,该数据集最早于2018年和2019年发布,最早于2020年发布。RF、SVM和KNN达到了92.96%、86.23%和91.48%的峰值,分别是入侵探测和92.27%、83.52%和89.80%的恶意软件检测。发现所有三种算法都能够有效地用于2021年IoT网络安全现状。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
专知会员服务
115+阅读 · 2019年12月24日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年12月7日
Arxiv
0+阅读 · 2021年12月7日
Arxiv
0+阅读 · 2021年12月5日
Arxiv
0+阅读 · 2021年10月25日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
VIP会员
相关VIP内容
专知会员服务
115+阅读 · 2019年12月24日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员