Numerical weather forecasting on high-resolution physical models consume hours of computations on supercomputers. Application of deep learning and machine learning methods in forecasting revealed new solutions in this area. In this paper, we forecast high-resolution numeric weather data using both input weather data and observations by providing a novel deep learning architecture. We formulate the problem as spatio-temporal prediction. Our model is composed of Convolutional Long-short Term Memory, and Convolutional Neural Network units with encoder-decoder structure. We enhance the short-long term performance and interpretability with an attention and a context matcher mechanism. We perform experiments on high-scale, real-life, benchmark numerical weather dataset, ERA5 hourly data on pressure levels, and forecast the temperature. The results show significant improvements in capturing both spatial and temporal correlations with attention matrices focusing on different parts of the input series. Our model obtains the best validation and the best test score among the baseline models, including ConvLSTM forecasting network and U-Net. We provide qualitative and quantitative results and show that our model forecasts 10 time steps with 3 hour frequency with an average of 2 degrees error. Our code and the data are publicly available.
翻译:高分辨率物理模型的数值天气预测耗时超计算机的计算。在预测该领域的新解决方案时应用深层次学习和机器学习方法。在本文中,我们通过提供新的深层学习结构,利用输入天气数据和观测,预测高分辨率数字天气数据。我们将问题表述为spatio-时空预测。我们的模型由进化长期长期记忆和具有编码解码结构的结构的进化神经网络单元组成。我们通过关注和上下文匹配机制,提高短期性能和解释性能。我们在高尺度、实际生活、基准数字气象数据集、ERA5小时压力数据以及温度预报方面进行实验。结果显示,在获取空间和时间相关性方面有了重大改进,关注矩阵侧重于输入序列的不同部分。我们的模型在基线模型中获得了最佳的验证和最佳测试分数,包括CONLSTM预报网络和U-Net。我们提供了定性和定量结果,并显示我们以3小时的平均频率以2度误差来预测10个时的模型。