Neural translation models have proven to be effective in capturing sufficient information from a source sentence and generating a high-quality target sentence. However, it is not easy to get the best effect for bidirectional translation, i.e., both source-to-target and target-to-source translation using a single model. If we exclude some pioneering attempts, such as multilingual systems, all other bidirectional translation approaches are required to train two individual models. This paper proposes to build a single end-to-end bidirectional translation model using a two-dimensional grid, where the left-to-right decoding generates source-to-target, and the bottom-to-up decoding creates target-to-source output. Instead of training two models independently, our approach encourages a single network to jointly learn to translate in both directions. Experiments on the WMT 2018 German$\leftrightarrow$English and Turkish$\leftrightarrow$English translation tasks show that the proposed model is capable of generating a good translation quality and has sufficient potential to direct the research.
翻译:事实证明,神经翻译模型对于从源句中获取足够信息并产生高质量的目标句是有效的,然而,要对双向翻译,即使用单一模型的源对目标翻译和目标对源翻译产生最佳效果并非易事。如果我们排除一些开创性尝试,如多语种系统,则需要用所有其他双向翻译方法来培训两个单个模型。本文件提议用二维格格来建立一个单一端对端双向双向翻译模型,左对端解码生成源对目标,而下至上解码生成目标对源产出。我们的方法鼓励一个单一网络,而不是独立地培训两个模型,共同学习双向翻译。关于2018年德国元左曲英语和左曲方美元英语翻译任务实验显示,拟议的模型能够产生良好的翻译质量,并具有指导研究的充分潜力。