As a critical component for online advertising and marking, click-through rate (CTR) prediction has draw lots of attentions from both industry and academia field. Recently, the deep learning has become the mainstream methodological choice for CTR. Despite of sustainable efforts have been made, existing approaches still pose several challenges. On the one hand, high-order interaction between the features is under-explored. On the other hand, high-order interactions may neglect the semantic information from the low-order fields. In this paper, we proposed a novel prediction method, named FINT, that employs the Field-aware INTeraction layer which captures high-order feature interactions while retaining the low-order field information. To empirically investigate the effectiveness and robustness of the FINT, we perform extensive experiments on the three realistic databases: KDD2012, Criteo and Avazu. The obtained results demonstrate that the FINT can significantly improve the performance compared to the existing methods, without increasing the amount of computation required. Moreover, the proposed method brought about 2.72\% increase to the advertising revenue of a big online video app through A/B testing. To better promote the research in CTR field, we released our code as well as reference implementation at: https://github.com/zhishan01/FINT.


翻译:作为在线广告和标识的一个关键组成部分,点击率(CTR)预测吸引了业界和学术界的大量关注。最近,深层次的学习已成为CTR的主流方法选择。尽管作出了可持续的努力,但现有办法仍构成若干挑战。一方面,各功能之间的高度互动没有得到充分探讨。另一方面,高端互动可能忽视低级域的语义信息。在本文中,我们提议了一种新颖的预测方法,名为FINT,它利用了外地觉悟的INTEAAD层,在保留低级域信息的同时,捕捉到高级特征的相互作用。为实证地调查FINT的有效性和稳健性,我们在三个现实的数据库(KDDD2012、Criteo和Avazu)上进行了广泛的实验。获得的结果表明,与现有方法相比,FINT可以大大改进性能,但不会增加所需的计算量。此外,拟议的方法通过A/B测试,增加了一个大型在线视频应用程序的广告收入。为了更好地促进FINTNB/MZA的实地研究,我们在A/CTRGIS01中公布了一个代码。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员