Facial Expression Recognition (FER) is a classification task that points to face variants. Hence, there are certain affinity features between facial expressions, receiving little attention in the FER literature. Convolution padding, despite helping capture the edge information, causes erosion of the feature map simultaneously. After multi-layer filling convolution, the output feature map named albino feature definitely weakens the representation of the expression. To tackle these challenges, we propose a novel architecture named Amending Representation Module (ARM). ARM is a substitute for the pooling layer. Theoretically, it can be embedded in the back end of any network to deal with the Padding Erosion. ARM efficiently enhances facial expression representation from two different directions: 1) reducing the weight of eroded features to offset the side effect of padding, and 2) decomposing facial features to simplify representation learning. Experiments on public benchmarks prove that our ARM boosts the performance of FER remarkably. The validation accuracies are respectively 90.42% on RAF-DB, 65.2% on Affect-Net, and 58.71% on SFEW, exceeding current state-of-the-art methods. Our implementation and trained models are available at https://github.com/JiaweiShiCV/Amend-Representation-Module.


翻译:显性表达度识别(FER)是一个分类任务,它指向不同的表达方式。 因此, 面部表达方式之间有一些相似性, 在 FER 文献中很少引起注意。 革命悬浮, 尽管有助于捕捉边缘信息, 却同时导致地貌图的侵蚀。 在多层填充卷变后, 名为白化的输出特征地图肯定会削弱表达方式的表现形式。 为了应对这些挑战, 我们提议了一个名为“ 修正代表模块( ARM) ” 的新结构。 ARM 是集合层的替代物。 从理论上讲, 它可以嵌入任何网络的后端, 以对付悬浮微缩微缩微粒。 ARM 高效地提高面部表情表情的表达方式, 来自两个不同方向:1) 降低被侵蚀的特征的重量,以抵消垫面部的侧面效应; 2) 将面部特征分解,以简化表达方式学习。 公共基准实验证明我们的ARM- DB 的确认度分别为90. 42%, Affect-Net 的65.2%, Afffect- Net 和58.71% SFEW, 超过当前州- br- /M. Refr_A.

0
下载
关闭预览

相关内容

安谋控股公司,又称ARM公司,跨国性半导体设计与软件公司,总部位于英国英格兰剑桥。主要的产品是ARM架构处理器的设计,将其以知识产权的形式向客户进行授权,同时也提供软件开发工具。 维基百科
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
53+阅读 · 2019年12月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2020年3月26日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员