Change Point Detection (CPD) methods identify changes in the trends and properties of time series data in order to describe the underlying behaviour of the system. Detecting changes and anomalies in the web services, the trend of application usage, and sensor data can provide valuable insights into the system. We propose TS-CP2 a novel self-supervised approach for CPD that is based upon contrastive representation learning with a Temporal Convolutional Network (TCN). TS-CP2 is the first CPD approach to employ a contrastive learning strategy. Through extensive evaluations, we demonstrate that our method outperforms five different state-of-the-art CPD methods, including those adopting either unsupervised or semi-supervised approach. TS-CP2 is shown to improve both non-Deep learning- and Deep learning-based methods by 0.28 and0.12 in terms of average F1-score across three datasets, respectively.


翻译:变化点探测(CPD)方法确定时间序列数据的趋势和特性的变化,以便描述系统的基本行为。检测网络服务的变化和异常、应用使用趋势和传感器数据可以对系统提供宝贵的洞察力。我们建议TS-CP2为CPD提出一种新的自我监督方法,该方法以与时空变迁网络的对比性代表性学习为基础。TS-CP2是采用对比性学习战略的第一种CPD方法。通过广泛的评估,我们证明我们的方法优于五种最先进的CPD方法,包括采用不受监督或半监督方法的方法。TS-CP2显示,从三个数据集的平均F1核心来看,分别改进了0.28和0.12的非深入学习方法和深层学习方法。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
80+阅读 · 2020年6月11日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
13+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
25+阅读 · 2021年3月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
13+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员