Generalized Labeled Multi-Bernoulli (GLMB) densities arise in a host of multi-object system applications analogous to Gaussians in single-object filtering. However, computing the GLMB filtering density requires solving NP-hard problems. To alleviate this computational bottleneck, we develop a linear complexity Gibbs sampling framework for GLMB density computation. Specifically, we propose a tempered Gibbs sampler that exploits the structure of the GLMB filtering density to achieve an $\mathcal{O}(T(P+M))$ complexity, where $T$ is the number of iterations of the algorithm, $P$ and $M$ are the number hypothesized objects and measurements. This innovation enables an $\mathcal{O}(T(P+M+\log(T))+PM)$ complexity implementation of the GLMB filter. Convergence of the proposed Gibbs sampler is established and numerical studies are presented to validate the proposed GLMB filter implementation.
翻译:多贝诺利(GLMB) 通用标签密度( GLMB) 出现在一系列与高斯相类似的多对象系统应用程序中, 类似高斯的单项过滤器。 然而, 计算GLMB过滤密度需要解决NP- 硬性问题。 为了缓解这一计算瓶颈, 我们为GLMB密度计算开发了一个线性复杂的 Gibs 取样框架。 具体地说, 我们提议一个温和的 Gibbs 取样器, 利用GLMB过滤密度的结构来达到$\ mathcal{O}( T( P+M) ) ( T ( T ( T+ M) ) ) 的复杂度, 并提出了数字研究, 以验证拟议的 GLMB 过滤器实施情况 。