Previous works on human motion prediction follow the pattern of building a mapping relation between the sequence observed and the one to be predicted. However, due to the inherent complexity of multivariate time series data, it still remains a challenge to find the extrapolation relation between motion sequences. In this paper, we present a new prediction pattern, which introduces previously overlooked human poses, to implement the prediction task from the view of interpolation. These poses exist after the predicted sequence, and form the privileged sequence. To be specific, we first propose an InTerPolation learning Network (ITP-Network) that encodes both the observed sequence and the privileged sequence to interpolate the in-between predicted sequence, wherein the embedded Privileged-sequence-Encoder (Priv-Encoder) learns the privileged knowledge (PK) simultaneously. Then, we propose a Final Prediction Network (FP-Network) for which the privileged sequence is not observable, but is equipped with a novel PK-Simulator that distills PK learned from the previous network. This simulator takes as input the observed sequence, but approximates the behavior of Priv-Encoder, enabling FP-Network to imitate the interpolation process. Extensive experimental results demonstrate that our prediction pattern achieves state-of-the-art performance on benchmarked H3.6M, CMU-Mocap and 3DPW datasets in both short-term and long-term predictions.
翻译:人类运动先前的预测工作遵循了在所观察到的序列和所要预测的序列之间建立绘图关系的模式。 但是,由于多变时间序列数据的内在复杂性,找到运动序列之间的外推关系仍然是一项挑战。 在本文中,我们提出了一个新的预测模式,其中引入了先前被忽视的人类外形,从内推角度执行预测任务。这些在预测序列之后就存在,形成特长序列。具体地说,我们首先提议建立一个 InterPLision 学习网络( ITP- Network), 将所观察到的序列和特长序列编码, 以在预测序列之间进行内插置, 使嵌入的Privile- 序列- Encoder( Priv- Encoder) 同时学习特有的知识。 然后,我们提出一个最后预测网络( FP-Network), 其特长序列是无法观测的,但配有一个新的PK-Simulate 和PK的短序。这个模拟器作为所观测到的C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-SAL-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-