Named Data Networking (NDN) offers promising advantages in deploying next-generation service applications over distributed computing networks. We consider the problem of dynamic orchestration over a NDN-based computing network, in which nodes can be equipped with communication, computation, and data producing resources. Given a set of services with function-chaining structures, we address the design of distributed online algorithm that controls each node to make adaptive decisions on flowing service requests, committing function implementations, and/or producing data. We design a Service Discovery Assisted Dynamic Orchestration (SDADO) algorithm that reduces the end-to-end (E2E) delay of delivering the services, while providing optimal throughput performance. The proposed algorithm hybrids queuing-based flexibility and topology-based discipline, where the topological information is not pre-available but obtained through our proposed service discovery mechanism. We provide throughput-optimality analysis for SDADO, and then provide numerical results that confirm our analysis and demonstrates reduced round-trip E2E delay.
翻译:命名数据网络(NDN)在对分布式计算网络部署下一代服务应用程序方面提供了大有裨益的优势。我们考虑了对基于NDN的计算网络进行动态协调的问题,在这种网络中,节点可以配备通信、计算和数据生成资源。鉴于一套带有功能链结构的服务,我们处理的是对每个节点进行控制的分布式在线算法的设计,以对流动服务请求作出适应性决定,实施功能实施和/或制作数据。我们设计了一个服务发现辅助动态操作算法,以减少服务交付的端到端(E2E)延迟,同时提供最佳的吞吐性性能。拟议的算法混合计算法基于弹性和基于地形的学科,其中地形信息不是预先具备的,而是通过我们拟议的服务发现机制获得的。我们为SDADO提供通过量-优化分析,然后提供数字结果,以证实我们的分析,并显示圆点E2E延迟。