In this work, we propose a new pooling strategy for language identification by considering Indian languages. The idea is to obtain utterance level features for any variable length audio for robust language recognition. We use the GhostVLAD approach to generate an utterance level feature vector for any variable length input audio by aggregating the local frame level features across time. The generated feature vector is shown to have very good language discriminative features and helps in getting state of the art results for language identification task. We conduct our experiments on 635Hrs of audio data for 7 Indian languages. Our method outperforms the previous state of the art x-vector [11] method by an absolute improvement of 1.88% in F1-score and achieves 98.43% F1-score on the held-out test data. We compare our system with various pooling approaches and show that GhostVLAD is the best pooling approach for this task. We also provide visualization of the utterance level embeddings generated using Ghost-VLAD pooling and show that this method creates embeddings which has very good language discriminative features.
翻译:在这项工作中,我们提出一个新的语言识别集合战略,通过考虑印度语言。目的是为任何变异长度的音频获得发音级功能,以获得强大的语言识别。我们使用GhostVLAD 方法,通过对本地框架级的音频汇总,为任何变异长度的输入音频生成发音级特性矢量。生成的特性矢量显示具有极好的语言区别性特征,有助于获得语言识别任务的艺术结果状态。我们对7种印度语言的音频数据进行了635Hrs的实验。我们的方法比艺术X-vector [11] 方法前一年级的状态高出1.88%,在悬置测试数据上实现了98.43%的F1-core。我们将我们的系统与各种集合方法进行比较,并表明GhostVLAD是这项工作的最佳集合方法。我们还提供了利用Ghost-VLAD集合生成的音频级嵌入点的图像,并显示这种方法创造了具有非常好语言区别特征的嵌入式。