Stochastic gradient Langevin dynamics (SGLD) and stochastic gradient Hamiltonian Monte Carlo (SGHMC) are two popular Markov Chain Monte Carlo (MCMC) algorithms for Bayesian inference that can scale to large datasets, allowing to sample from the posterior distribution of the parameters of a statistical model given the input data and the prior distribution over the model parameters. However, these algorithms do not apply to the decentralized learning setting, when a network of agents are working collaboratively to learn the parameters of a statistical model without sharing their individual data due to privacy reasons or communication constraints. We study two algorithms: Decentralized SGLD (DE-SGLD) and Decentralized SGHMC (DE-SGHMC) which are adaptations of SGLD and SGHMC methods that allow scaleable Bayesian inference in the decentralized setting for large datasets. We show that when the posterior distribution is strongly log-concave and smooth, the iterates of these algorithms converge linearly to a neighborhood of the target distribution in the 2-Wasserstein distance if their parameters are selected appropriately. We illustrate the efficiency of our algorithms on decentralized Bayesian linear regression and Bayesian logistic regression problems.


翻译:这些算法不适用于分散化的学习环境,因为一个代理人网络由于隐私原因或通信限制,正在合作学习统计模型的参数,而不分享其个人数据。我们研究两种算法:分散式的SGLD(DE-SGLD)和分散式的SGHMC(DE-SGHMC),这是对SGLD和SGHMC方法的调整,这些算法允许在分散化的环境下对大数据集进行比例化的Bayesian推论。我们表明,当一个代理人网络由于隐私原因或通信限制,正在协力合作,学习统计模型的参数,而不分享其个人数据。我们研究两种算法:分散式的SGLD(DE-SGLD)和分散式的SGHMC(DE-SGHMC),它们是对SGLD和SGHMC方法的调整,这些方法允许在分散化环境中对大数据集进行比例化的推论。我们指出,如果选择了分化式回归率,那么这些算法将线性地集中到2瓦瑟斯坦距离的目标分布区段的附近。

0
下载
关闭预览

相关内容

【NeurIPS 2020】大规模分布式鲁棒优化方法
专知会员服务
25+阅读 · 2020年10月13日
专知会员服务
52+阅读 · 2020年9月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【强化学习炼金术】李飞飞高徒带你一文读懂RL来龙去脉
黑龙江大学自然语言处理实验室
3+阅读 · 2018年1月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月7日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【强化学习炼金术】李飞飞高徒带你一文读懂RL来龙去脉
黑龙江大学自然语言处理实验室
3+阅读 · 2018年1月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员