We study the relationship between the eternal domination number of a graph and its clique covering number. Using computational methods, we show that the smallest graph having its eternal domination number less than its clique covering number has $10$ vertices. This answers a question of Klostermeyer and Mynhardt [Protecting a graph with mobile guards, Appl. Anal. Discrete Math. $10$ $(2016)$, no. $1$, $1-29$]. We also determine the complete set of $10$-vertex and $11$-vertex graphs having eternal domination numbers less than their clique covering numbers. In addition, we study the problem on triangle-free graphs, circulant graphs, planar graphs and cubic graphs. Our computations show that all triangle-free graphs and all circulant graphs of order $12$ or less have eternal domination numbers equal to their clique covering numbers, and exhibit $13$ triangle-free graphs and $2$ circulant graphs of order $13$ which do not have this property. Using these graphs, we describe a method to generate an infinite family of triangle-free graphs and an infinite family of circulant graphs with eternal domination numbers less than their clique covering numbers. Our computations also show that all planar graphs of order $11$ or less, all $3$-connected planar graphs of order $13$ or less and all cubic graphs of order less than $18$ have eternal domination numbers equal to their clique covering numbers. Finally, we show that for any integer $k \geq 2$ there exist infinitely many graphs having domination number and eternal domination number equal to $k$ containing dominating sets which are not eternal dominating sets. This answers another question of Klostermeyer and Mynhardt [Eternal and Secure Domination in Graphs, Topics in domination in graphs, Dev. Math. $64$ $(2020)$, $445-478$, Springer, Cham].


翻译:我们用计算方法研究一个图的永久支配数与其覆盖数字的永久支配数之间的关系。 我们通过计算方法, 显示其永久支配数低于其覆盖数字的最小的图的永久支配数为10美元。 这回答了Klostermeyer和Mynhardt的问题。 我们的计算显示,所有无三角的图表和所有顺序的螺旋图都具有与数字相等的永久支配数[2016美元, 10美元, 美元, 10美元, 美元, 29美元]。 我们还确定一套全套的 10美元 的永久支配数和 11美元 的顶值图, 其永久支配数比其覆盖数字的固定值少。 此外, 我们用这些图表来研究无三角的图、 circurental 图表、 平面图中的任何数字, 我们用一个不固定的图表来显示其直径的直径数。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年10月9日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年1月19日
Arxiv
0+阅读 · 2021年12月10日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年1月19日
Top
微信扫码咨询专知VIP会员