We present SaSTL -- a novel Spatial Aggregation Signal Temporal Logic -- for the efficient runtime monitoring of safety and performance requirements in smart cities. We first describe a study of over 1,000 smart city requirements, some of which can not be specified using existing logic such as Signal Temporal Logic (STL) and its variants. To tackle this limitation, we develop two new logical operators in SaSTL to augment STL for expressing spatial aggregation and spatial counting characteristics that are commonly found in real city requirements. We also develop efficient monitoring algorithms that can check a SaSTL requirement in parallel over multiple data streams (e.g., generated by multiple sensors distributed spatially in a city). We evaluate our SaSTL monitor by applying to two case studies with large-scale real city sensing data (e.g., up to 10,000 sensors in one requirement). The results show that SaSTL has a much higher coverage expressiveness than other spatial-temporal logics, and with a significant reduction of computation time for monitoring requirements. We also demonstrate that the SaSTL monitor can help improve the safety and performance of smart cities via simulated experiments.


翻译:我们介绍SastL -- -- 一个新型的空间聚合信号时空逻辑 -- -- 用于高效运行时间监测智能城市的安全和性能要求。我们首先描述对1 000多个智能城市要求的研究,其中一些要求不能使用现有逻辑,如信号时空逻辑(STL)及其变体。为了应对这一限制,我们在SastL开发了两个新的逻辑操作员,以扩大STL,用于表达空间聚合和空间计数特点,这是在真实城市要求中常见的。我们还开发了高效的监测算法,可以检查在多个数据流(例如,在一个城市中空间分布的多个传感器生成的)平行的SatL要求。我们通过应用大规模实际城市感测数据(例如,在一项要求中高达10,000个传感器)进行的两个案例研究来评估我们的SatL监测。结果显示,SastL的覆盖范围比其他空间时空逻辑要高得多,而且监测要求的计算时间也大大缩短。我们还表明,SatL监测器能够帮助通过模拟实验改善智能城市的安全和性能。

0
下载
关闭预览

相关内容

智慧城市(英语:Smart City)是指利用各种信息技术或创新意念,集成城市的组成系统和服务,以提升资源运用的效率,优化城市管理和服务,以及改善市民生活质量。智慧城市把新一代信息技术充分运用在城市的各行各业之中的基于知识社会下一代创新(创新2.0)的城市信息化高级形态,实现信息化、工业化与城镇化深度融合,有助于缓解“大城市病”,提高城镇化质量,实现精细化和动态管理,并提升城市管理成效和改善市民生活质量。关于智慧城市的具体定义比较广泛,目前在国际上被广泛认同的定义是,智慧城市是新一代信息技术支撑、知识社会下一代创新(创新2.0)环境下的城市形态,强调智慧城市不仅仅是物联网、云计算等新一代信息技术的应用,更重要的是通过面向知识社会的创新2.0的方法论应用,构建用户创新、开放创新、大众创新、协同创新为特征的城市可持续创新生态。
专知会员服务
14+阅读 · 2021年5月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2019年9月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
4+阅读 · 2021年7月1日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Labeling Panoramas with Spherical Hourglass Networks
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
5+阅读 · 2019年9月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员