Deep networks are often considered to be more expressive than shallow ones in terms of approximation. Indeed, certain functions can be approximated by deep networks provably more efficiently than by shallow ones, however, no tractable algorithms are known for learning such deep models. Separately, a recent line of work has shown that deep networks trained with gradient descent may behave like (tractable) kernel methods in a certain over-parameterized regime, where the kernel is determined by the architecture and initialization, and this paper focuses on approximation for such kernels. We show that for ReLU activations, the kernels derived from deep fully-connected networks have essentially the same approximation properties as their shallow two-layer counterpart, namely the same eigenvalue decay for the corresponding integral operator. This highlights the limitations of the kernel framework for understanding the benefits of such deep architectures. Our main theoretical result relies on characterizing such eigenvalue decays through differentiability properties of the kernel function, which also easily applies to the study of other kernels defined on the sphere.


翻译:深层网络在近似方面往往被认为比浅层网络更清晰。 事实上,某些功能可以比浅层网络更高效地被深层网络所近似,然而,在学习这种深层模型方面,没有已知的可移植算法。 另外,最近的一项工作表明,受过梯度下降训练的深层网络在某种超分化制度中可能表现得像(可吸引的)内核方法,因为内核是由构造和初始化决定的,本文侧重于这类内核的近似。我们表明,对于RELU的激活,由深层完全连接网络产生的内核基本上具有与浅层对等的近似特性,即对相应整体操作者而言,其类值同样衰减。这凸显了内核框架在了解这种深层结构的惠益方面的局限性。我们的主要理论结果依赖于通过内核功能的可变性特性来定性这种脑值衰变。 对于RELU的激活,从深层完全连接网络中产生的内核也很容易适用于对球体上定义的其他内核的研究。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员