We investigate how the activation function can be used to describe neural firing in an abstract way, and in turn, why it works well in artificial neural networks. We discuss how a spike in a biological neurone belongs to a particular universality class of phase transitions in statistical physics. We then show that the artificial neurone is, mathematically, a mean field model of biological neural membrane dynamics, which arises from modelling spiking as a phase transition. This allows us to treat selective neural firing in an abstract way, and formalise the role of the activation function in perceptron learning. The resultant statistical physical model allows us to recover the expressions for some known activation functions as various special cases. Along with deriving this model and specifying the analogous neural case, we analyse the phase transition to understand the physics of neural network learning. Together, it is shown that there is not only a biological meaning, but a physical justification, for the emergence and performance of typical activation functions; implications for neural learning and inference are also discussed.
翻译:我们研究激活功能如何抽象地用来描述神经发火,反过来又研究它为什么在人工神经网络中运作良好。我们讨论生物神经元的激增如何属于统计物理阶段转变中一个特定的普遍性类别。然后我们从数学上表明,人工神经元是一个生物神经膜动态的中位模型,它来自模型跳动,作为一个阶段过渡。这使我们能够以抽象的方式处理选择性神经发火,并正式确定激活功能在感官学习中的作用。由此产生的统计物理模型允许我们恢复某些已知激活功能的表达方式,作为各种特殊案例。除了生成这一模型和指定类似的神经案例外,我们分析阶段的转变,以了解神经网络学习的物理。加在一起,我们表明,对于典型激活功能的出现和履行不仅具有生物意义,而且具有物理理由;也讨论了对神经学习和推断的影响。