LiDARs are usually more accurate than cameras in distance measuring. Hence, there is strong interest to apply LiDARs in autonomous driving. Different existing approaches process the rich 3D point clouds for object detection, tracking and recognition. These methods generally require two initial steps: (1) filter points on the ground plane and (2) cluster non-ground points into objects. This paper proposes a field-tested fast 3D point cloud segmentation method for these two steps. Our specially designed algorithms allow instantly process raw LiDAR data packets, which significantly reduce the processing delay. In our tests on Velodyne UltraPuck, a 32 layers spinning LiDAR, the processing delay of clustering all the $360^\circ$ LiDAR measures is less than 1ms. Meanwhile, a coarse-to-fine scheme is applied to ensure the clustering quality. Our field experiments in public roads have shown that the proposed method significantly improves the speed of 3D point cloud clustering whilst maintains good accuracy.
翻译:在距离测量方面,LiDARs通常比照相机更准确。 因此,人们非常希望将LiDARs应用到自动驾驶中。 不同的现有方法处理用于物体探测、跟踪和识别的丰富的 3D点云层。 这些方法一般需要两个初步步骤:(1) 地面平面上的过滤点和(2) 将非地面点分组到物体中。 本文为这两个步骤提出了一个经过实地测试的快速 3D点云分解方法。 我们专门设计的算法允许立即处理原始的LiDAR数据包, 这大大缩短了处理的延迟。 在我们对Velodyne UltraPuck的测试中, 一个32层旋转的LiDAR, 将所有360 cic$ LiDAR 措施组合的处理延迟不到1米。 同时, 套用粗到纤维的方法确保组合质量。 我们在公共道路上的实地实验表明, 拟议的方法大大改进了 3D点云集的速度,同时保持良好的精确性。