What does human pose tell us about a scene? We propose a task to answer this question: given human pose as input, hallucinate a compatible scene. Subtle cues captured by human pose -- action semantics, environment affordances, object interactions -- provide surprising insight into which scenes are compatible. We present a large-scale generative adversarial network for pose-conditioned scene generation. We significantly scale the size and complexity of training data, curating a massive meta-dataset containing over 19 million frames of humans in everyday environments. We double the capacity of our model with respect to StyleGAN2 to handle such complex data, and design a pose conditioning mechanism that drives our model to learn the nuanced relationship between pose and scene. We leverage our trained model for various applications: hallucinating pose-compatible scene(s) with or without humans, visualizing incompatible scenes and poses, placing a person from one generated image into another scene, and animating pose. Our model produces diverse samples and outperforms pose-conditioned StyleGAN2 and Pix2Pix baselines in terms of accurate human placement (percent of correct keypoints) and image quality (Frechet inception distance).
翻译:人类的姿势告诉我们什么是场景? 我们提议了一个任务来回答这个问题: 给人姿势提供输入,给一个相容的场景带来幻觉。 由人姿势所捕捉的精细信号 -- -- 动作语义、环境保证、物体相互作用 -- -- 提供令人惊讶的洞察力,了解哪些场景是相容的。 我们展示了一个大型的基因对抗网络,以产生容貌的场景。 我们大幅扩大培训数据的规模和复杂性,整理一个庞大的元数据集,在日常生活环境中包含超过1 900万个人类框架。 我们把StyGAN2模型处理这种复杂数据的能力增加一倍,并设计一个容貌调节机制,以驱动我们模型学习摆放和场景之间的细微关系。 我们利用我们经过训练的模型来应用各种应用: 与人一起或没有人一起或一起对容容容的场景进行幻觉, 将一个人从一个产生的图像到另一个场景, 和动容貌的姿势。 我们的模型产生不同的样品, 和外形形变的StyleGAN2和Pix2PixPix- base 基线, 准确的人的距离定位(正确的初) 和图像。