Cyber deception is emerging as a promising approach to defending networks and systems against attackers and data thieves. However, despite being relatively cheap to deploy, the generation of realistic content at scale is very costly, due to the fact that rich, interactive deceptive technologies are largely hand-crafted. With recent improvements in Machine Learning, we now have the opportunity to bring scale and automation to the creation of realistic and enticing simulated content. In this work, we propose a framework to automate the generation of email and instant messaging-style group communications at scale. Such messaging platforms within organisations contain a lot of valuable information inside private communications and document attachments, making them an enticing target for an adversary. We address two key aspects of simulating this type of system: modelling when and with whom participants communicate, and generating topical, multi-party text to populate simulated conversation threads. We present the LogNormMix-Net Temporal Point Process as an approach to the first of these, building upon the intensity-free modeling approach of Shchur et al.~\cite{shchur2019intensity} to create a generative model for unicast and multi-cast communications. We demonstrate the use of fine-tuned, pre-trained language models to generate convincing multi-party conversation threads. A live email server is simulated by uniting our LogNormMix-Net TPP (to generate the communication timestamp, sender and recipients) with the language model, which generates the contents of the multi-party email threads. We evaluate the generated content with respect to a number of realism-based properties, that encourage a model to learn to generate content that will engage the attention of an adversary to achieve a deception outcome.


翻译:网络欺骗正在成为保护网络和系统不受攻击者和数据盗贼攻击的一个充满希望的方法。然而,尽管相对廉价,但制作规模现实内容的成本却非常昂贵,因为丰富、互动的欺骗性技术基本上是手工制作的。随着机器学习的最近改进,我们现在有机会将规模和自动化引入创建现实和诱人模拟内容。在这项工作中,我们提出了一个框架,将电子邮件和即时信息式集体通信的生成规模自动化。组织内部的这种信息平台包含大量私人通信和文件附件内的宝贵信息,使其成为一个吸引对手的电子邮件目标。我们处理模拟这一类型系统的两个关键方面:模拟参与者何时和与谁交流,并制作时与谁交流的多方文本,以模拟模拟的模拟内容。我们介绍LogNormMix-Net Temoral Point进程,以此为首个方法,在Shrchchur和al-deal Exmal Exmessional Expressional Expressional-motionalalal motional-moal motional-modal-motional motional-motional-motional motional-motional-motional-motional mode motional-motions 将生成一个模拟到一个模拟的模型,我们模拟的模拟到一个模拟到一个模拟到一个模拟到一个模拟的版本,我们模拟到一个模拟的服务器的模拟的模拟到一个模拟到多式的版本,我们模拟的版本。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Arxiv
0+阅读 · 2022年1月25日
Arxiv
4+阅读 · 2021年1月14日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员