This study explores an interesting pattern emerging from research that combines artificial intelligence with sound symbolism. In these studies, supervised machine learning algorithms are trained to classify samples based on the sounds of referent names. Machine learning algorithms are efficient learners of sound symbolism, but they tend to bias one category over the other. The pattern is this: when a category arguably represents greater threat, the algorithms tend to overpredict to that category. A hypothesis, framed by error management theory, is presented that proposes that this may be evidence of an adaptation to preference cautious behaviour. This hypothesis is tested by constructing extreme gradient boosted (XGBoost) models using the sounds that make up the names of Chinese, Japanese and Korean Pokemon and observing classification error distribution.
翻译:这项研究探索了将人工智能与声象学相结合的研究所产生的一种有趣的模式。 在这些研究中,监督的机器学习算法经过培训,根据引用名的音效对样本进行分类。 机器学习算法是声象学的有效学习者,但往往偏向于一个类别。 其模式是这样:当一个类别可能构成更大的威胁时,算法往往过分预言这一类别。 由错误管理理论构成的假设表明,这可能是适应偏好谨慎行为的证据。 这一假设是通过使用构成中文、日文和韩文名称的音效以及观察分类错误分布的极端梯度推动模型(XGBoost)来进行测试的。