In neuroscience, researchers have developed informal notions of what it means to reverse engineer a system, e.g., being able to model or simulate a system in some sense. A recent influential paper of Jonas and Kording, that examines a microprocessor using techniques from neuroscience, suggests that common techniques to understand neural systems are inadequate. Part of the difficulty, as a previous work of Lazebnik noted, lies in lack of formal language. We provide a theoretical framework for defining reverse engineering of computational systems, motivated by the neuroscience context. Of specific interest are recent works where, increasingly, interventions are being made to alter the function of the neural circuitry to both understand the system and treat disorders. Starting from Lazebnik's viewpoint that understanding a system means you can ``fix it'', and motivated by use-cases in neuroscience, we propose the following requirement on reverse engineering: once an agent claims to have reverse-engineered a neural circuit, they subsequently need to be able to: (a) provide a minimal set of interventions to change the input/output (I/O) behavior of the circuit to a desired behavior; (b) arrive at this minimal set of interventions while operating under bounded rationality constraints (e.g., limited memory) to rule out brute-force approaches. Under certain assumptions, we show that this reverse engineering goal falls within the class of undecidable problems. Next, we examine some canonical computational systems and reverse engineering goals (as specified by desired I/O behaviors) where reverse engineering can indeed be performed. Finally, using an exemplar network, the ``reward network'' in the brain, we summarize the state of current neuroscientific understanding, and discuss how computer-science and information-theoretic concepts can inform goals of future neuroscience studies.


翻译:在神经科学中,研究人员对改变一个系统意味着什么形成了非正式的概念,例如,能够模拟或模拟某种意义上的系统。最近一份具有影响力的Jonas和Kording论文用神经科学的技术对一个微处理器进行了研究,它表明理解神经系统的常见技术是不充分的。正如Lazebnik以前的工作指出的那样,部分困难在于缺乏正式语言。我们提供了一个理论框架,用以界定由神经科学背景驱动的计算系统的反向工程。特别感兴趣的是最近的一些工程,在这些工程中,人们越来越多地采取干预措施来改变神经电路的功能,以便既理解系统,又治疗疾病。从Lazebnik的观点出发,了解一个系统意味着可以“固定”神经系统。我们提出以下关于反向工程的要求:一旦一个代理声称对神经电路进行了反向设计,他们随后需要能够:(a)提供一套最低限度的干预,以改变电路路路的输入/输出(I/O)行为和治疗失序。从Lazebnal-roal 开始,我们用一个最起码的电路路流的动作, 直径直径分析,我们用一个最短的轨道上的方法来解释。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月24日
Arxiv
8+阅读 · 2021年5月21日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员