Two objects may be close in the Hausdor? metric, yet have very different geometric and topological properties. We examine other methods of comparing digital images such that objects close in each of these measures have some similar geometric or topological property. Such measures may be combined with the Hausdorff metric to yield a metric in which close images are similar with respect to multiple properties.


翻译:我们研究了其他比较数字图像的方法,这样,每个测量中最接近的物体都具有相似的几何或地貌属性。这类措施可以与Hausdorf衡量标准相结合,得出一个在多个属性方面接近图像的尺度。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
9+阅读 · 2017年7月28日
LibRec 每周算法:Collaborative Metric Learning (WWW'17)
LibRec智能推荐
6+阅读 · 2017年7月4日
Arxiv
0+阅读 · 2021年10月2日
Arxiv
14+阅读 · 2020年12月17日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
6+阅读 · 2018年3月29日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
9+阅读 · 2017年7月28日
LibRec 每周算法:Collaborative Metric Learning (WWW'17)
LibRec智能推荐
6+阅读 · 2017年7月4日
相关论文
Top
微信扫码咨询专知VIP会员