In this report, we present the Baidu-UTS submission to the EPIC-Kitchens Action Recognition Challenge in CVPR 2019. This is the winning solution to this challenge. In this task, the goal is to predict verbs, nouns, and actions from the vocabulary for each video segment. The EPIC-Kitchens dataset contains various small objects, intense motion blur, and occlusions. It is challenging to locate and recognize the object that an actor interacts with. To address these problems, we utilize object detection features to guide the training of 3D Convolutional Neural Networks (CNN), which can significantly improve the accuracy of noun prediction. Specifically, we introduce a Gated Feature Aggregator module to learn from the clip feature and the object feature. This module can strengthen the interaction between the two kinds of activations and avoid gradient exploding. Experimental results demonstrate our approach outperforms other methods on both seen and unseen test set.
翻译:在本报告中,我们将Baidu-UTS 提交到 CVPR 2019 CVPR 中的 EPIC-Kitchens 行动识别挑战 。 这是应对这一挑战的胜利解决方案 。 在这项任务中, 目标是从每个视频段的词汇中预测动词、 名词和动作 。 EPIC- Kitchens 数据集包含各种小对象、 强烈运动模糊和隐蔽。 要找到和识别一个演员与之互动的对象, 是很困难的。 要解决这些问题, 我们使用对象探测功能来指导3D Convolution Neural 网络( CNN) 的培训, 这可以大大提高名词预测的准确性。 具体地说, 我们引入了一个 Gedict 特征聚合器模块, 学习剪辑特性和对象特性 。 这个模块可以加强两种激活和避免梯度爆炸的相互作用。 实验结果显示, 我们的方法在所见和看不见的测试中都超越了其他方法 。