Radio Access Networks (RAN) are increasingly softwarized and accessible via data-collection and control interfaces. RAN intelligent control (RIC) is an approach to manage these interfaces at different timescales. In this paper, we develop a RIC platform called RICworld, consisting of (i) EdgeRIC, which is colocated, but decoupled from the RAN stack, and can access RAN and application-level information to execute AI-optimized and other policies in realtime (sub-millisecond) and (ii) DigitalTwin, a full-stack, trace-driven emulator for training AI-based policies offline. We demonstrate that realtime EdgeRIC operates as if embedded within the RAN stack and significantly outperforms a cloud-based near-realtime RIC (> 15 ms latency) in terms of attained throughput. We train AI-based polices on DigitalTwin, execute them on EdgeRIC, and show that these policies are robust to channel dynamics, and outperform queueing-model based policies by 5% to 25% on throughput and application-level benchmarks in a variety of mobile environments.


翻译:摘要:无线接入网络(RAN)越来越软件化,可以通过数据收集和控制接口进行访问。 RAN 智能控制(RIC)是管理这些接口的方法。在本文中,我们开发了一个名为 RICworld 的 RIC 平台,其中包括(i)EdgeRIC,它与 RAN 堆栈相邻,但与之分离,并可以访问 RAN 和应用程序级别的信息,以实时(亚毫秒级别)执行 AI 优化和其他策略,(ii)DigitalTwin,一个完整的,基于轨迹驱动的仿真程序,用于离线训练基于 AI 的策略。 我们展示了实时 EdgeRIC 的操作方式,就像嵌入在 RAN 堆栈中一样,并且在实现的吞吐量方面显著优于基于云的准实时 RIC(> 15 ms 延迟)。我们在 DigitalTwin 上训练基于 AI 的策略,在 EdgeRIC 上执行它们,并展示了这些策略针对信道动态具有鲁棒性,并且在各种移动环境中比基于队列模型的策略在吞吐量和应用程序级别基准上优于 5% 至 25%。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【NeurIPS2022】GENIE:高阶去噪扩散求解器
专知
0+阅读 · 2022年11月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】在CPU上进行实时无监督单目深度估计
泡泡机器人SLAM
17+阅读 · 2019年5月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
31+阅读 · 2022年2月15日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
VIP会员
相关资讯
【NeurIPS2022】GENIE:高阶去噪扩散求解器
专知
0+阅读 · 2022年11月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】在CPU上进行实时无监督单目深度估计
泡泡机器人SLAM
17+阅读 · 2019年5月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员