Spinal degeneration plagues many elders, office workers, and even the younger generations. Effective pharmic or surgical interventions can help relieve degenerative spine conditions. However, the traditional diagnosis procedure is often too laborious. Clinical experts need to detect discs and vertebrae from spinal magnetic resonance imaging (MRI) or computed tomography (CT) images as a preliminary step to perform pathological diagnosis or preoperative evaluation. Machine learning systems have been developed to aid this procedure generally following a two-stage methodology: first perform anatomical localization, then pathological classification. Towards more efficient and accurate diagnosis, we propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices. SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage. Empirical results on the Spinal Disease Intelligent Diagnosis Tianchi Competition (SDID-TC) dataset of 550 exams demonstrate that our approach surpasses existing methods by a large margin.


翻译:有效的药理或外科干预可以帮助缓解退化的脊椎条件。然而,传统的诊断程序往往过于繁琐。临床专家需要从脊椎磁共振成像(MRI)或计算断层成像(CT)中检测盘和脊椎。作为进行病理诊断或术前评估的初步步骤,已经开发了机器学习系统来协助这一程序:首先进行解剖本地化,然后进行病理分类。为了实现更有效和准确的诊断,我们建议了一个阶段的检测框架,称为SpineOne,同时对磁共振成成像(MRI)切片中的退化盘和脊椎进行本地化和分类。SpineOi需要基于以下三个关键技术:(1) 关键点热图的新设计,以便利同时进行关键点本地化和分类;(2) 使用关注模块,以更好地区分磁盘和脊椎的表达方式;(3) 将新的梯度调整目标联系机制,将当前Silvicultive IMLIA级测试的多项目标联系起来。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
9+阅读 · 2021年3月3日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员