Phase retrieval consists in the recovery of an unknown signal from phaseless measurements of its usually complex-valued Fourier transform. Without further assumptions, this problem is notorious to be severe ill posed such that the recovery of the true signal is nearly impossible. In certain applications like crystallography, speckle imaging in astronomy, or blind channel estimation in communications, the unknown signal has a specific, sparse structure. In this paper, we exploit these sparse structure to recover the unknown signal uniquely up to inevitable ambiguities as global phase shifts, transitions, and conjugated reflections. Although using a constructive proof essentially based on Prony's method, our focus lies on the derivation of a recovery guarantee for multivariate signals using an adaptive sampling scheme. Instead of sampling the entire multivariate Fourier intensity, we only employ Fourier samples along certain adaptively chosen lines. For bivariate signals, an analogous result can be established for samples in generic directions. The number of samples here scales quadratically to the sparsity level of the unknown signal.


翻译:阶段检索包括从对其通常的复杂价值的Fourier变异进行无阶段性测量中恢复一个未知信号。 没有进一步的假设, 这个问题就臭名昭著地严重, 造成真实信号的恢复几乎不可能。 在某些应用中, 如晶体学、 天文学中的分光成像或通信中的盲道估计, 未知信号有一个具体、 稀疏的结构。 在本文中, 我们利用这些稀疏的结构来恢复未知信号, 其独特性到不可避免的模糊性, 正如全球阶段转移、 过渡和混凝土反射一样。 尽管我们使用基本上基于Prony方法的建设性证据, 我们的重点是利用适应性取样方法为多变量信号提供恢复保证。 我们没有对整个多变量 Fourier 强度取样, 而是按照某些适应性选择的路线使用 Fourier 样本 。 对于双变量信号, 可以为通用方向的样本确定一个类似的结果。 这里的样本数量与未知信号的孔径水平是四倍的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月8日
Arxiv
0+阅读 · 2023年3月8日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员