Audiovisual active speaker detection (ASD) addresses the task of determining the speech activity of a candidate speaker given acoustic and visual data. Typically, systems model the temporal correspondence of audiovisual cues, such as the synchronisation between speech and lip movement. Recent work has explored extending this paradigm by additionally leveraging speaker embeddings extracted from candidate speaker reference speech. This paper proposes the speaker comparison auxiliary network (SCAN) which uses speaker-specific information from both reference speech and the candidate audio signal to disambiguate challenging scenes when the visual signal is unresolvable. Furthermore, an improved method for enrolling face-speaker libraries is developed, which implements a self-supervised approach to video-based face recognition. Fitting with the recent proliferation of wearable devices, this work focuses on improving speaker-embedding-informed ASD in the context of egocentric recordings, which can be characterised by acoustic noise and highly dynamic scenes. SCAN is implemented with two well-established baselines, namely TalkNet and Light-ASD; yielding a relative improvement in mAP of 14.5% and 10.3% on the Ego4D benchmark, respectively.
翻译:暂无翻译