For general input automata, there exist regular constraint languages such that asking if a given input automaton admits a synchronizing word in the constraint language is PSPACE-complete or NP-complete. Here, we investigate this problem for commutative automata over an arbitrary alphabet and automata with simple idempotents over a binary alphabet as input automata. The latter class contains, for example, the \v{C}ern\'y family of automata. We find that for commutative input automata, the problem is always solvable in polynomial time, for every constraint language. For input automata with simple idempotents over a binary alphabet and with a constraint language given by a partial automaton with up to three states, the constrained synchronization problem is also solvable in polynomial time.
翻译:对于一般输入自动mata, 通常存在限制语言, 询问某个输入自动maton 是否在限制语言中接受同步的单词是 PSPACE 完成或 NP 完成 。 在这里, 我们调查任意字母上的通货性自动mata 和二进制自动mata 的自动mata 问题, 使用简单的一元能力作为输入自动mata 。 后一类包含, 例如, 自动数据 的通货性自动Mata 。 我们发现, 对于 自动输入自动数据, 问题总是在多式语言中可以溶解的 。 对于在二进制字母上带有简单一元能力的输入自动mata, 并且由三州以上的部分自动通给予的强制语言, 限制同步问题在多元时间也是可以溶解的 。