A data set of recorded single played tones of a concert grand piano is investigated using Machine Learning (ML) on psychoacoustic timbre features. The examined instrument has been recorded at two stages: firstly right after manufacture and secondly after being played in a concert hall for one year. A previous study [Plath2019] revealed that listeners clearly distinguished both stages but no clear correlation with acoustics, signal processing tools or verbalizations of perceived differences could be found. Using a Self-Organizing Map (SOM), training single as well as double feature sets, it can be shown that spectral flux is able to perfectly cluster the two stages. Sound Pressure Level (SPL), roughness, and fractal correlation dimension (as a measure for initial transient chaoticity) are furthermore able to order the keys with respect to high and low notes. Combining spectral flux with the three other features in double-feature training sets maintains stage clustering only for SPL and fractal dimension, showing sub-clusters for both stages. These sub-clusters point to a homogenization of SPL for stage 2 with respect to stage 1 and a pronounced ordering and sub-clustering of key regions with respect to initial transient chaoticity.


翻译:使用机器学习(ML),对音乐大钢琴的单曲调子进行了调查。经过检查的仪器分两个阶段记录:制造后第一,制造后第二,在音乐厅播放一年后第二。先前的一项研究[Plath2019]显示,听众明显区分了两个阶段,但与声学、信号处理工具或认知差异的言辞没有明显关联。使用自组织地图(SOM)、培训单集和双功能集,可以显示光谱通量能够完美地将两个阶段组合在一起。声压等级(SPL)、粗糙度和分光谱相关维度(作为初始易变混乱度的一种衡量标准)还可以为高低音调订下键。将光谱通量与双功能培训组中的其他三个特征相结合,只维持SPL和分集层的阶段组合,显示两个阶段的分集。这些子集显示SPL第2阶段的同质化点,与第1阶段和明确定序和分集层区域相邻。

0
下载
关闭预览

相关内容

IEEE信号处理信函(SPL)是每月一次的存档出版物,旨在快速传播原始的,最先进的想法,并在信号,图像,语音,语言和音频处理方面提供及时、重要的贡献。 官网地址:http://dblp.uni-trier.de/db/journals/spl/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2022年2月17日
Arxiv
6+阅读 · 2019年12月30日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
26+阅读 · 2018年8月19日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员