We present a new strictification method for type-theoretic structures that are only weakly stable under substitution. Given weakly stable structures over some model of type theory, we construct equivalent strictly stable structures by evaluating the weakly stable structures at generic contexts. These generic contexts are specified using the categorical notion of familial representability. This generalizes the local universes method of Lumsdaine and Warren. We show that generic contexts can also be constructed in any category with families which is freely generated by collections of types and terms, without any definitional equality. This relies on the fact that they support first-order unification. These free models can only be equipped with weak type-theoretic structures, whose computation rules are given by typal equalities. Our main result is that any model of type theory with weakly stable weak type-theoretic structures admits an equivalent model with strictly stable weak type-theoretic structures.
翻译:我们为替代类型理论结构提出了一种新的严格化方法,这种方法在替代时只能稳定下来。鉴于某些类型理论模型的稳定性结构较弱,我们通过在一般情况下评估不稳定的结构来建立相当的严格稳定的结构。这些通用背景是使用家庭代表性的绝对概念来说明的。这概括了Lumsdaine和Warren的当地宇宙方法。我们表明,也可以在任何类别中建立通用环境,家庭通过类型和术语的集成自由产生,而没有任何定义平等。这取决于它们支持一级统一这一事实。这些自由模式只能安装薄弱的类型理论结构,其计算规则是按差数等来定的。我们的主要结果是,任何类型理论模式,如果类型结构稳定不稳,其类型理论结构就会完全稳定。