We present a new strictification method for type-theoretic structures that are only weakly stable under substitution. Given weakly stable structures over some model of type theory, we construct equivalent strictly stable structures by evaluating the weakly stable structures at generic contexts. These generic contexts are specified using the categorical notion of familial representability. This generalizes the local universes method of Lumsdaine and Warren. We show that generic contexts can also be constructed in any category with families which is freely generated by collections of types and terms, without any definitional equality. This relies on the fact that they support first-order unification. These free models can only be equipped with weak type-theoretic structures, whose computation rules are given by typal equalities. Our main result is that any model of type theory with weakly stable weak type-theoretic structures admits an equivalent model with strictly stable weak type-theoretic structures.


翻译:我们为替代类型理论结构提出了一种新的严格化方法,这种方法在替代时只能稳定下来。鉴于某些类型理论模型的稳定性结构较弱,我们通过在一般情况下评估不稳定的结构来建立相当的严格稳定的结构。这些通用背景是使用家庭代表性的绝对概念来说明的。这概括了Lumsdaine和Warren的当地宇宙方法。我们表明,也可以在任何类别中建立通用环境,家庭通过类型和术语的集成自由产生,而没有任何定义平等。这取决于它们支持一级统一这一事实。这些自由模式只能安装薄弱的类型理论结构,其计算规则是按差数等来定的。我们的主要结果是,任何类型理论模式,如果类型结构稳定不稳,其类型理论结构就会完全稳定。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
UIUC韩家炜:从海量非结构化文本中挖掘结构化知识
专知会员服务
96+阅读 · 2021年12月30日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2018年1月19日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月24日
Arxiv
0+阅读 · 2022年1月21日
Inductive Relation Prediction by Subgraph Reasoning
Arxiv
11+阅读 · 2020年2月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2018年1月19日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员