High-resolution (HR) hyperspectral face image plays an important role in face related computer vision tasks under uncontrolled conditions, such as low-light environment and spoofing attacks. However, the dense spectral bands of hyperspectral face images come at the cost of limited amount of photons reached a narrow spectral window on average, which greatly reduces the spatial resolution of hyperspectral face images. In this paper, we investigate how to adapt the deep learning techniques to hyperspectral face image super-resolution (HFSR), especially when the training samples are very limited. Benefiting from the amount of spectral bands, in which each band can be seen as an image, we present a spectral splitting and aggregation network (SSANet) for HFSR with limited training samples. In the shallow layers, we split the hyperspectral image into different spectral groups and take each of them as an individual training sample (in the sense that each group will be fed into the same network). Then, we gradually aggregate the neighbor bands at the deeper layers to exploit the spectral correlations. By this spectral splitting and aggregation strategy (SSAS), we can divide the original hyperspectral image into multiple samples to support the efficient training of the network and effectively exploit the spectral correlations among spectrum. To cope with the challenge of small training sample size (S3) problem, we propose to expand the training samples by a self-representation model and symmetry-induced augmentation. Experiments show that the introduced SSANet can well model the joint correlations of spatial and spectral information. By expanding the training samples, our proposed method can effectively alleviate the S3 problem. The comparison results demonstrate that our proposed method can outperform the state-of-the-arts.


翻译:高分辨率(HR)超光谱脸部图像在不受控制的条件下,如低光度环境和潜伏攻击等,在面对相关的计算机视觉任务时起着重要作用。然而,超光谱面图像的密集光谱波段以有限的光谱窗口平均达到一个狭窄的光谱窗口,这大大降低了超光谱面图像的空间分辨率。在本文中,我们研究如何将深层学习技术应用于超光谱面图像超分辨率(高频),特别是当培训样本非常有限时。从光谱频带数量(每波段可被视为图像)中获益。我们为高频SR展示一个光谱分解和汇总网络网络(SSANet)网络。在浅层层中,我们将超光谱图像分成一个有限的光谱区段,将每个超光谱图像分成一个不同的光谱窗口,作为单个培训样本(即每个群体将被输入同一网络)。然后,我们逐渐将更深层的邻系模型汇总到更深层的光谱层相关关系。通过这一方法的光谱分解和集战略(SS),我们可以将原始的光谱层图层图段图图图图图段分割到多个样本中,从而有效地显示我们的深度培训的深度,从而支持高效的深度培训。Sml化的深度,从而显示我们的光谱路段的深度,从而显示的深度,从而显示我们的光谱系的深度的深度,从而显示我们的光谱系的深度的深度的深度的深度,从而显示,从而显示,从而显示我们的深度的深度,从而显示我们的深度的深度的深度的深度的深度,从而可以显示我们的深度变变变。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2021年8月4日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
83+阅读 · 2020年6月21日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
详解GAN的谱归一化(Spectral Normalization)
PaperWeekly
11+阅读 · 2019年2月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
0+阅读 · 2021年10月17日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
详解GAN的谱归一化(Spectral Normalization)
PaperWeekly
11+阅读 · 2019年2月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Top
微信扫码咨询专知VIP会员