The global pandemic situation has severely affected all countries. As a result, almost all countries had to adjust to online technologies to continue their processes. In addition, Sri Lanka is yearly spending ten billion on elections. We have examined a proper way of minimizing the cost of hosting these events online. To solve the existing problems and increase the time potency and cost reduction we have used IoT and ML-based technologies. IoT-based data will identify, register, and be used to secure from fraud, while ML algorithms manipulate the election data and produce winning predictions, weather-based voters attendance, and election violence. All the data will be saved in cloud computing and a standard database to store and access the data. This study mainly focuses on four aspects of an E-voting system. The most frequent problems across the world in E-voting are the security, accuracy, and reliability of the systems. E-government systems must be secured against various cyber-attacks and ensure that only authorized users can access valuable, and sometimes sensitive information. Being able to access a system without passwords but using biometric details has been there for a while now, however, our proposed system has a different approach to taking the credentials, processing, and combining the images, reformatting and producing the output, and tracking. In addition, we ensure to enhance e-voting safety. While ML-based algorithms use different data sets and provide predictions in advance.


翻译:全球大流行病情形严峻,几乎所有国家都不得不采用在线技术来进行各方面的工作。此外,斯里兰卡每年花费100亿来举行选举。本研究探讨了一种减少在线选举成本的方法,使用物联网和机器学习技术来解决现有问题,并增加时间效率和降低成本。基于物联网数据的识别、注册和使用,实现了防止欺诈;机器学习算法处理选举数据,提供预测、基于天气的选民出勤率和选举暴力。所有数据将保存在云计算和标准数据库中,以存储和访问数据。本研究主要关注E-voting系统的四个方面。在全世界,E-voting的最常见问题是系统安全、准确性和可靠性。电子政务系统必须防范各种网络攻击,并确保只有授权用户可以访问有价值的、有时是敏感的信息。虽然使用生物识别详细信息而不是密码能够访问系统已经存在一段时间,但我们提出的系统采用了不同的方法来获取凭据、处理和组合图像、重新格式化和生成输出以及跟踪。此外,我们还确保提高了E-voting的安全性。机器学习算法使用不同的数据集预测结果。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
专知会员服务
44+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月4日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
专知会员服务
44+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员