We develop a new neural network based independent component analysis (ICA) method by directly minimizing the dependence amongst all extracted components. Using the matrix-based R{\'e}nyi's $\alpha$-order entropy functional, our network can be directly optimized by stochastic gradient descent (SGD), without any variational approximation or adversarial training. As a solid application, we evaluate our ICA in the problem of hyperspectral unmixing (HU) and refute a statement that "\emph{ICA does not play a role in unmixing hyperspectral data}", which was initially suggested by~\cite{nascimento2005does}. Code and additional remarks of our DDICA is available at https://github.com/hongmingli1995/DDICA.
翻译:我们开发了新的以神经网络为基础的独立部件分析(ICA)方法,直接将所有提取部件之间的依赖性降到最低。使用基于矩阵的 R'e}nyi 的 $\ alpha$-order entropy 功能,我们的网络可以在没有任何变异近似或对抗性培训的情况下,通过随机梯度梯度梯度下降直接优化。作为一个可靠的应用,我们评估了我们的ICA超光谱混合问题,并驳斥了“/emph{ICA在解密超光谱数据方面不起作用”的说法,这是由“cite{nasciono2005does}”最初提出的。我们的DDIICA的代码和补充评论可在https://github.com/hongmingli1995/DICA网站上查阅。