In the past 30 years, scientists have searched nature, including animals and insects, and biology in order to discover, understand, and model solutions for solving large-scale science challenges. The study of bionics reveals that how the biological structures, functions found in nature have improved our modern technologies. In this study, we present our discovery of evolutionary and nature-inspired algorithms applications in Data Science and Data Analytics in three main topics of pre-processing, supervised algorithms, and unsupervised algorithms. Among all applications, in this study, we aim to investigate four optimization algorithms that have been performed using the evolutionary and nature-inspired algorithms within data science and analytics. Feature selection optimization in pre-processing section, Hyper-parameter tuning optimization, and knowledge discovery optimization in supervised algorithms, and clustering optimization in the unsupervised algorithms.
翻译:在过去30年中,科学家们搜索了大自然,包括动物和昆虫,以及生物学,以便发现、理解和示范解决大规模科学挑战的方法。生物感官研究揭示了生物结构、自然中发现的功能如何改善了现代技术。在本研究中,我们在数据科学和数据分析三大主题中展示了我们发现的进化和自然启发的算法应用:预处理、监督算法和不受监督的算法。在本研究的所有应用中,我们的目标是调查在数据科学和分析中利用进化和自然启发的算法进行的四种优化算法。预处理部分的特征选择优化、超参数调整优化和在受监督的算法中的知识发现优化,以及未受监督的算法中的组合优化。