We study a distributed approach for seeking a Nash equilibrium in $n$-cluster games with strictly monotone mappings. Each player within each cluster has access to the current value of her own smooth local cost function estimated by a zero-order oracle at some query point. We assume the agents to be able to communicate with their neighbors in the same cluster over some undirected graph. The goal of the agents in the cluster is to minimize their collective cost. This cost depends, however, on actions of agents from other clusters. Thus, a game between the clusters is to be solved. We present a distributed gradient play algorithm for determining a Nash equilibrium in this game. The algorithm takes into account the communication settings and zero-order information under consideration. We prove almost sure convergence of this algorithm to a Nash equilibrium given appropriate estimations of the local cost functions' gradients.
翻译:我们研究一种分配方法,在纯单调图谱的美元组别游戏中寻求纳什平衡。 每个组别中的每个玩家都可获得她自己的平滑本地成本功能的当前值,在某个查询点,根据零顺序预估值,每个组别中的每个玩家都可以获得她自己的平滑本地成本功能的当前值。 我们假设代理商能够与同一组别中的邻居通过一些非方向图进行通信。 集群中的代理商的目标是最大限度地降低集体成本。 但是,这一成本取决于其他组别中的代理商的行动。 因此, 组别之间的游戏需要解决。 我们为确定这个游戏中的纳什平衡提供了一种分布式梯度游戏算法。 算法考虑到了通信设置和审议中的零顺序信息。 我们证明,根据对本地成本函数的梯度的适当估计,这种算法几乎可以与纳什平衡一致。