Monotone submodular maximization with a knapsack constraint is NP-hard. Various approximation algorithms have been devised to address this optimization problem. In this paper, we revisit the widely known modified greedy algorithm. First, we show that this algorithm can achieve an approximation factor of $0.405$, which significantly improves the known factors of $0.357$ given by Wolsey and $(1-1/\mathrm{e})/2\approx 0.316$ given by Khuller et al. More importantly, our analysis closes a gap in Khuller et al.'s proof for the extensively mentioned approximation factor of $(1-1/\sqrt{\mathrm{e}})\approx 0.393$ in the literature to clarify a long-standing misconception on this issue. Second, we enhance the modified greedy algorithm to derive a data-dependent upper bound on the optimum. We empirically demonstrate the tightness of our upper bound with a real-world application. The bound enables us to obtain a data-dependent ratio typically much higher than $0.405$ between the solution value of the modified greedy algorithm and the optimum. It can also be used to significantly improve the efficiency of algorithms such as branch and bound.
翻译:以 knapsack 限制 限制 的单体单体单体微调子最大化是 NP- 硬 。 已经设计了各种近似算法来解决优化问题。 在本文中, 我们重新审视了广为人知的修改的贪婪算法。 首先, 我们显示, 这个算法可以达到0. 405美元的近似系数。 这大大改善了Wolsey给出的已知系数0. 357美元和Khuller 等人给出的( 1/\\ mterhrm{e})/2\ approx 0. 0. 316美元。 更重要的是, 我们的分析缩小了Khuller et al. 中大量提到的$( 1/\ sqrt=mathrm{e})\ approx 0. 393$ 。 以澄清长期的错误。 其次, 我们强化了修改的贪婪算法, 以获得一个以数据为主的上限的上限。 我们实验性地展示了我们上层与现实应用的紧密性。 。 约束使我们能够获得数据依赖率的比例通常高于4. 405$ 405美元, 这也可以大大改进的算法。