In this article, discrete and stochastic changes in (effective) population size are incorporated into the spectral representation of a biallelic diffusion process for drift and small mutation rates. A forward algorithm inspired by Hidden-Markov-Model (HMM) literature is used to compute exact sample allele frequency spectra for three demographic scenarios: single changes in (effective) population size, boom-bust dynamics, and stochastic fluctuations in (effective) population size. An approach for fully agnostic demographic inference from these sample allele spectra is explored, and sufficient statistics for step-wise changes in population size are found. Further, convergence behaviours of the polymorphic sample spectra for population size changes on different time scales are examined and discussed within the context of inference of the effective population size. Joint visual assessment of the sample spectra and the temporal coefficients of the spectral decomposition of the forward diffusion process is found to be important in determining departure from equilibrium. Stochastic changes in (effective) population size are shown to shape sample spectra particularly strongly.


翻译:在本文中,将离散性和随机性的(有效)人口规模变化纳入了漂移和小突变率的双等位基因扩散过程的谱表示中。使用启发式-Markov-模型(HMM)文献的正向算法来计算三种人口统计学情境下的精确的样本等位基因频率谱: 单一变化的(有效)人口规模,繁荣萧条,和(有效)人口规模的随机波动。探讨了一种从这些样本等位基因频率推断全然的人口统计学信息的方法,并找到了逐步变化的人口规模的充足统计量。此外,还对人口统计学的推断中的不同时间尺度上等位基因多样性样本频谱的收敛行为进行了研究和讨论。在综合考虑样本频谱和正向扩散过程的谱分解的时间系数方面,发现联合视觉评估非常重要,可以用来确定偏离平衡状态的情况。随机变化的(有效)人口规模被证明对样本谱产生了特别强的影响。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
100+阅读 · 2023年5月10日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员