The high dimensionality of soft mechanisms and the complex physics of fluid-structure interactions render the sim2real gap for soft robots particularly challenging. Our framework allows high fidelity prediction of dynamic behavior for composite bi-morph bending structures in real hardware to accuracy near measurement uncertainty. We address this gap with our differentiable simulation tool by learning the material parameters and hydrodynamics of our robots. We demonstrate an experimentally-verified, fast optimization pipeline for learning the material parameters and hydrodynamics from quasi-static and dynamic data via differentiable simulation. Our method identifies physically plausible Young's moduli for various soft silicone elastomers and stiff acetal copolymers used in creation of our three different fish robot designs. For these robots we provide a differentiable and more robust estimate of the thrust force than analytical models and we successfully predict deformation to millimeter accuracy in dynamic experiments under various actuation signals. Although we focus on a specific application for underwater soft robots, our framework is applicable to any pneumatically actuated soft mechanism. This work presents a prototypical hardware and simulation problem solved using our framework that can be extended straightforwardly to higher dimensional parameter inference, learning control policies, and computational design enabled by its differentiability.
翻译:软机制的高度维度和流体结构互动的复杂物理物理学使得软机器人的模拟差距特别具有挑战性。 我们的框架允许对在真实硬件中的复合双向弯曲结构的动态行为作出高度忠诚的预测,以接近测量不确定性的准确性。 我们用我们机器人的物质参数和流体动力学来用我们不同的模拟工具来解决这一差距。 我们展示了一种实验性、快速优化的管道,以便通过不同模拟从准静态和动态数据中学习材料参数和流体动力。 我们的方法确定了各种软硅体弹性弹性弹性体和硬性电动聚合物的体貌。 对于这些机器人来说,我们提供了一种不同于分析模型的、更可靠的推力估计,我们成功地预测了在各种振动信号下进行动态实验的微米精度。 尽管我们侧重于对水下软机器人的具体应用,但我们的框架适用于任何中微软机制。 这项工作展示了一种在创建我们三种不同的鱼类机器人设计过程中使用的、 硬性硬件和模拟共生聚合物。 对于这些机器人来说,我们提供了一种不同度的模型的精确度的模型,能够通过直截截截截截的模型的计算,从而解决其设计的参数的参数,从而可以扩展地使其设计得以在设计上进行更精确的参数上解决。