Differential equations are indispensable to engineering and hence to innovation. In recent years, physics-informed neural networks (PINN) have emerged as a novel method for solving differential equations. PINN method has the advantage of being meshless, scalable, and can potentially be intelligent in terms of transferring the knowledge learned from solving one differential equation to the other. The exploration in this field has majorly been limited to solving linear-elasticity problems, crack propagation problems. This study uses PINNs to solve coupled thermo-mechanics problems of materials with functionally graded properties. An in-depth analysis of the PINN framework has been carried out by understanding the training datasets, model architecture, and loss functions. The efficacy of the PINN models in solving thermo-mechanics differential equations has been measured by comparing the obtained solutions either with analytical solutions or finite element method-based solutions. While R2 score of more than 99% has been achieved in predicting primary variables such as displacement and temperature fields, achieving the same for secondary variables such as stress turns out to be more challenging. This study is the first to implement the PINN framework for solving coupled thermo-mechanics problems on composite materials. This study is expected to enhance the understanding of the novel PINN framework and will be seminal for further research on PINNs.


翻译:不同方程式是工程学所不可或缺的,因此也是创新所不可或缺的。近年来,物理知情神经网络(PINN)已成为解决差异方程式的新颖方法。 PINN方法的优点是,它具有将解决一个差异方程式所学知识传授给另一个差异方程式的优势,具有将知识传授给另一个方程式的智慧。这一领域的探索主要限于解决线性弹性问题,即裂变传播问题。这项研究利用PINN解决具有功能性能的材料的热机问题。对PINN框架进行了深入分析,通过了解培训数据集、模型结构以及损失功能,对PINN框架进行了深入分析。PINN模型在解决热机械方程式差异方程式方面所学的功效通过比较获得的解决办法与分析解决方案或有限要素方法解决方案进行比较来衡量。在预测流离失所和温度领域等初级变量时,R2得99%以上得分以上,对压力等次级变量也取得了同样的成绩。这一研究通过了解培训数据集模型、模型结构和PIN框架的预期问题将进一步提升PIN框架。这一研究将进一步推进PIN。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
34+阅读 · 2020年12月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月24日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
34+阅读 · 2020年12月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员