Graph Neural Network(GNN) based social recommendation models improve the prediction accuracy of user preference by leveraging GNN in exploiting preference similarity contained in social relations. However, in terms of both effectiveness and efficiency of recommendation, a large portion of social relations can be redundant or even noisy, e.g., it is quite normal that friends share no preference in a certain domain. Existing models do not fully solve this problem of relation redundancy and noise, as they directly characterize social influence over the full social network. In this paper, we instead propose to improve graph based social recommendation by only retaining the informative social relations to ensure an efficient and effective influence diffusion, i.e., graph denoising. Our designed denoising method is preference-guided to model social relation confidence and benefits user preference learning in return by providing a denoised but more informative social graph for recommendation models. Moreover, to avoid interference of noisy social relations, it designs a self-correcting curriculum learning module and an adaptive denoising strategy, both favoring highly-confident samples. Experimental results on three public datasets demonstrate its consistent capability of improving two state-of-the-art social recommendation models by robustly removing 10-40% of original relations. We release the source code at https://github.com/tsinghua-fib-lab/Graph-Denoising-SocialRec.
翻译:以社会建议为基础的社会建议模型(GNN)通过利用GNN利用社会关系中包含的类似偏好,提高了用户偏好预测的准确性。然而,从建议的效果和效率来看,社会关系中的很大一部分可能是多余的,甚至吵闹,例如,朋友在某些领域不享有偏爱,这是非常正常的。现有的模型没有完全解决关系冗余和噪音的问题,因为它们直接体现了社会对整个社会网络的影响。在本文中,我们提议改进基于社会建议的图表,只是保留信息丰富的社会关系,以确保有效和高效地影响传播,即图解密。我们设计的除污方法是偏向社会关系示范信心和用户偏好学习回报,方法是为建议模式提供一种分红但信息更丰富的社会图表。此外,为了避免扰乱社会关系,它设计了一个自我校正的课程学习模块和适应性去营养战略,两者都支持高度自信的样本。三个公共数据集的实验结果显示它始终有能力改进两个州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州</s>