Knowledge about outcomes is critical for complex event understanding but is hard to acquire. We show that by pre-identifying a participant in a complex event, crowd workers are able to (1) infer the collective impact of salient events that make up the situation, (2) annotate the volitional engagement of participants in causing the situation, and (3) ground the outcome of the situation in state changes of the participants. By creating a multi-step interface and a careful quality control strategy, we collect a high quality annotated dataset of 8K short newswire narratives and ROCStories with high inter-annotator agreement (0.74-0.96 weighted Fleiss Kappa). Our dataset, POQue (Participant Outcome Questions), enables the exploration and development of models that address multiple aspects of semantic understanding. Experimentally, we show that current language models lag behind human performance in subtle ways through our task formulations that target abstract and specific comprehension of a complex event, its outcome, and a participant's influence over the event culmination.
翻译:关于结果的知识对于了解复杂事件至关重要,但很难获得。我们显示,通过预先确定一个复杂事件的参与者,人群工人能够(1) 推断构成这一局势的突出事件的集体影响,(2) 说明参与者自愿参与造成这种情况,(3) 将情况的结果作为参与者状态变化的基础。通过创建多步界面和谨慎的质量控制战略,我们收集了一个高质量的附加说明的数据集,包括8K短新闻线叙述和ROCStories,并附有高度的政府间协议(0.74-0.96加权Fleiss Kappa)。我们的数据集,POQue(参与结果问题),有助于探索和开发解决语义理解多方面问题的模型。我们实验性地表明,通过我们针对复杂事件、其结果和参与者对事件顶点的抽象和具体理解,以及参与者对事件顶点的影响,当前语言模型在微妙程度上落后于人类表现。