Autoregressive (AR) encoder-decoder neural networks have proved successful in many NLP problems, including Semantic Parsing -- a task that translates natural language to machine-readable parse trees. However, the sequential prediction process of AR models can be slow. To accelerate AR for semantic parsing, we introduce a new technique called TreePiece that tokenizes a parse tree into subtrees and generates one subtree per decoding step. On TopV2 benchmark, TreePiece shows 4.6 times faster decoding speed than standard AR, and comparable speed but significantly higher accuracy compared to Non-Autoregressive (NAR).


翻译:自回归编码器-解码器神经网络在许多NLP问题中都取得了成功,包括语义分析——一种将自然语言翻译成可读的机器解析树的任务。然而,自回归模型的顺序预测过程可能会很慢。为了加速自回归语义分析,我们引入了一种叫做TreePiece的新技术,它将解析树分成子树,并在每个解码步骤中生成一个子树。在TopV2基准测试中,TreePiece的解码速度比标准自回归快4.6倍,并且与非自回归(NAR)相比,速度相当,但准确性显著更高。

0
下载
关闭预览

相关内容

语义分析的最终目的是理解句子表达的真实语义。但是,语义应该采用什么表示形式一直困扰着研究者们,至今这个问题也没有一个统一的答案。语义角色标注(semantic role labeling)是目前比较成熟的浅层语义分析技术。基于逻辑表达的语义分析也得到学术界的长期关注。
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
从语言学到深度学习NLP,一文概述自然语言处理
人工智能学家
13+阅读 · 2018年1月28日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
从语言学到深度学习NLP,一文概述自然语言处理
人工智能学家
13+阅读 · 2018年1月28日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员